Note for: HCVpred: A web server for predicting the bioactivity of hepatitis C virus NS5B inhibitors
Note for: HCVpred: A web server for predicting the
bioactivity of hepatitis C virus NS5B inhibitors
Doi: 10.1002/jcc.26223
Overview
HCV
-         
NS5B -- > one of three potential therapeutic
target HCV (other two – NS3/4A, NS5A) -- > involve in viral replication
-         
Developing classification structure-activity
relationship (CSAR) model -- > for identifying substructures giving rise to
anti-HCV from 578 non-redundant compounds
-         
NS5B inhibitors -- >
o  
Set of 12 fingerprint descriptors -- > use as
predictive models
o  
Random forest algorithm with 100 independent
data splits
-         
Modelability (MODI index) of data se
o  
Robust
o  
0.88 exceeding – threshold 0.6
-         
Predictive performance
o  
Accuracy
o  
Sensitivity
o  
Specificity
o  
Matthews coefficient
-         
In-depth analysis of top 20 important
descriptors
o  
Aromatic ring and alkyl side chains -- >
important for NS5B inhibition
-         
Predictive model is publicly deposited -- >
allow user to predict biological activity
-         
Web-server -- > use for designing more potent
and specific drugs against HCV NS5B
Extract the flow
-         
Structural + chemical functions of
compounds/inhibitors and biological activity
o  
Understand the relationship between physicochemical
properties on biological activity
o  
Physicochemical properties of compound -- >
computed through molecular descriptors calculation software -- > obtain both
quantitative value + qualitative label
-         
Data compilation and curation
o  
HCV NS5B -- > ChEMBL ID: CHEMBL5375
o  
1903 bioactivity data points from 1350 compounds
§ 
IC50 is used as bioactivity unit for further
investigate
§ 
865 compounds
§ 
Define threshold 
·        
<1 uM active
·        
> 10 uM inactive
·        
Intermediate is excluded (1-10 uM) -- > 284 inhibitors
·        
Final non-redundant and curated compounds --
> 578 inhibitors
-         
Fingerprint descriptors extraction
o  
PaDEL-descriptor -- > get 12 molecular
fingerprints from 9 classes
§ 
AtomPairs 2D, 
§ 
CDK fingerprinter, 
§ 
CDK extended,
§ 
CDK graph only,
§ 
E-state, 
§ 
Klekota–Roth, 
§ 
MACCS, 
§ 
PubChem,
§ 
Substructure
-         
415 – active compounds, 163 – inactive compounds
-         
Data set modelability
o  
Similar chemical structure
§ 
Give rise to different bioactivity -- > not
good for the modeling
o  
Similar chemical structure
§ 
Give rise to similar bioactivity -- > good
for the modeling
o  
MODI -- > modelability index -- > telling
you whether the model is good or bad -- > this study set MODI -- >
>0.65 -- > considered to be modelable
-         
Webserver
o  
Using shinny app
§ 
User interface (ui.R)
·        
Input data (SMILE string)
·        
PaDEL-descritor -- > convert SMILE to
chemical fingerprint
·        
Analyze through predictive model
§ 
Server interface (server.R)
-         
Input -- > SMILES string
o  
Passing through the descriptor extraction
(PaDEL)
o  
Go through RF machine learning
o  
Classification labeling the input SMILES, active
or inactive -- > output format .csv


Comments
Post a Comment